王锴

副教授 其他
擅长领域: 海洋油气
所在地区: 山东省/青岛市
专家类型
专家
联系电话
1315622869
性别
电子邮箱
wangkai512126@126.com
工作单位
海洋油气与水合物研究所
专家介绍

◎学习与工作经历

[1] 2016.7-至今,中国石油大学(华东),讲师,副教授

[2] 2018.5-2019.5,University of Calgary,博士后

[3] 2011.9-2016.7,北京师范大学,博士

[4] 2007.9-2011.7,华北电力大学,学士

◎研究方向

[1] 海洋油气工程信息与智能技术

[2] 海洋油气井振动监测理论与技术

[3] 多相流流动监测与智能控制


◎学术兼职

[1] 国家自然科学基金函评人

[2] 教学部学位中心论文网评人

[3] 研究生学位论文网评人

[4] 山东省科技专家库技术研发专家

[5] 《Energies》、《Minerals》SCI期刊主题编辑

[6] 《Geosciences》、《Geotechnics》国际期刊主题编辑

[7] 《SPE Journal》、《IEEE Transactions on Instrumentation & Measurement》、《Powder Technology》、《Measurement》、《Journal of Natural Gas Science and Engineering》、《Journal of Petroleum Science and Engineering》、《Applied acoustic》、《Ocean Engineering》、《Biomaterials》、《Physics of fluids》、《Computer Systems Science and Engineering》、《IEEE  Access》、《Journal of Petroleum Exploration and Production Technology》、《Shock and vibration》、《Journal of Dispersion Science and Technology》等20余种SCI期刊审稿人。



◎承担科研课题

[1] 基于多频碰撞响应驱动的深水气井出砂定量识别方法研究,国家自然基金,2022-2024

[2] 深水气井出砂诱发多频碰撞响应机理及砂粒径反演方法,山东省自然基金,2022-2024

[3] 钻头振动信号传收与信噪处理方法及样机开发,技术服务,2022-2024

[4] 复杂井筒多相流动安全保障技术研发,广东省自然资源厅,2021-2023

[5] 基于流量监测的溢漏早期发现系统,技术开发,2021-2022

[6] 一种非植入式稠油油井出砂量监测系统及其方法,技术开发,2019-2024

[7] 生产井出砂在线监测系统研究,技术开发,2018-2020

[8] 深水钻完井工程风险预警及管控,国家重点基础研究发展计划(973计划),2015-2019

[9] 乐东气田A9/A10调整井防碰地面监测及预警系统服务,技术服务,2018-2018 

[10] 基于液固两相流动撞击管壁诱发振动信号的油井出砂特性识别研究,山东省自然基金,2017-2019

[11] 油井出砂撞击管壁激发振动信号特性表征与识别研究,中央高校基本科研业务专项,2017-2019 

[12] 深水气田钻井期间水合物堵塞机理及预防方法研究,中央高校基本科研业务专项,2017-2019 

[13] 基于振动方法的气-砂两相流中固相检测研究,中国石油大学(华东),2017-2019 

[14] 恩平23-1油田群防碰预警技术服务,技术服务,2016-2017

[15] 海上丛式井防碰监测先导项目,技术开发,2015-2015

[16] 海上稠油油田适度出砂地面监测技术及装置研究,国家科技重大专项,2011-2015

[17] 海上油田丛式井多平台钻井趋近井筒监测方法,国家科技重大专项,2011-2015

[18] 加密井网防碰工程技术示范,国家科技重大专项,2011-2015


◎获奖情况

[1] 2022年,中国石油大学(华东),优秀工会干部

[2] 2022年,中国石油大学(华东),优秀本科毕业设计指导教师

[3] 2021年,中国石油大学(华东),师德考核优秀

[4] 2021年,中国石油大学(华东),年度考核优秀

[5] 2021年,中国石油工程设计大赛,优秀指导教师 

[6] 2020年,中国石油大学(华东),优秀工会会员  

[7] 2020年,中国石油大学(华东)石油工程学院,年度贡献奖

[8] 2019年,中国石油大学(华东),年度考核优秀

[9] 2018年,中国石油和化学工业联合会,科技进步二等奖

[10] 2017年,北京师范大学,优秀博士学位论文   

[11] 2017年,国家留学基金委,创新型人才国际合作培养博士后奖学金  

[12] 2017年,中国石油大学(华东),青年教师上岗培训优秀     


◎著作

[1] 专业必修课教材《海洋油气钻井工程》,中国石油大学出版社,2022年,参与.


◎论文

部分SCI收录论文:

[1] Experimentally Investigating Sand Particle Characteristics Under Annular Multiphase Flow Conditions Using a Triaxial Vibration Method, SPE J, (2022) SPE-212832-PA.

[2] Tripability Analysis of Casing Strings in Directional Wells Using the Continuous Beam-Col umn and Buckling Theory, Geofluids, (2022) 1-15.

[3] Multi-scale characterization and identification of dilute solid particles impacting walls within an oil-conveying flow with an experimental evaluation by dual vibration sensors, Chemical Engineering Journal, 416 (2021) 129173.

[4] Multi-frequency characterization of particle-wall interactions in a solid-liquid dispersion conveying pipe flow using a non-intrusive vibration detection method, Chemical Engineering Journal, 413 (2021) 127526.

[5] A leakage particle–wall impingement based vibro-acoustic characterization of the leaked sand–gas pipe flow, Particuology, 55 (2021) 84-93.

[6] Experimental Investigations of Offshore Sand Production Monitoring Based on the Analysis of Vibration in Response to Weak Shocks, Geofluids, (2021) 1-17.

[7] Experimental evaluation of rock disintegration detection in drilling by a new acoustic sensor method, Journal of Petroleum Science and Engineering, 195 (2020) 107853.

[8] Study of the optical properties of a square polycapillary slice, Optics Communications, 430 (2019) 139-142.

[9] An investigation of the detection of acoustic sand signals from the flow of solid particles in pipelines, Chemical Engineering Research and Design, 144 (2019) 272-284.

[10] Identification and characterization of solids in sand-water two-phase flows via vibration multi-sensor approaches, Advanced Powder Technology, 30 (2019) 2240-2250.

[11] Vibration multisensor fusion method for the identification and characterization of sand particles in dispersions of oil in water flow, Powder Technology, 352 (2019) 227-239.

[12] Non-intrusive characterization of sand particles dispersed in gas–water bubbly flow using straight and bent pipes with vibration sensing, Powder Technology, 344 (2019) 598-610.

[13] Vibration sensor approaches for experimental studies of sand detection carried in gas and droplets, Powder Technology, 352 (2019) 386-396.

[14] Vibration and acoustic signal characteristics of solid particles carried in sand-water two-phase flows, Powder Technology, 345 (2019) 159-168.

[15] Experimental evaluation of sand particle identification in oil–water–gas multiphase flows based on vibration signal analysis, Chemical Engineering Research and Design, 151 (2019) 79-90.

[16] Vibration sensor method for the identification of solid particle leakage from gas pipe flow based on particle-wall interaction, Powder Technology, (2019).

[17] Simulation of X-ray transmission and spatial imaging of polycapillary lenses with square cross-sections, Optics Communications, 420 (2018) 205-210.

[18] Analysis of signal characteristics from rock drilling based on vibration and acoustic sensor approaches, Applied Acoustics, 140 (2018) 275-282.

[19] Investigation of anodic plasma electrolytic carbonitriding on medium carbon steel, Surface and Coatings Technology, 313 (2017) 288-293.

[20] Acoustic sensor approaches for sand detection in sand–water two-phase flows, Powder Technology, 320 (2017) 739-747.

[21] The surface morphology analysis based on progressive approximation method using confocal three-dimensional micro X-ray fluorescence, Spectrochimica Acta Part B: Atomic Spectroscopy, 122 (2016) 127-131.

[22] The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis, Applied Physics A, 122 (2016).

[23] Combining depth analysis with surface morphology analysis to analyse the prehistoric painted pottery from Majiayao Culture by confocal 3D-XRF, Applied Physics A, 122 (2016).

[24] Vibration sensor approaches for the sand detection in gas–sand two phases flow, Powder Technology, 288 (2016) 221-227.

[25] Property of slice square polycapillary x-ray optics, Chinese Physics B, 25 (2016) 024102.

[26] A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 775 (2015) 12-14.

[27] Vibration Sensor Approaches for the Monitoring of Sand Production in Bohai Bay, Shock and Vibration, 2015 (2015) 1-6.

[28] Vibration sensor approaches for sand detection in oil–water–sand multiphase flow, Powder Technology, 276 (2015) 183-192.

[29] Numerical Simulation of Polycapillary X-ray Lens, Acta Optica Sinica, 35 (2015) 0234001.

[30] Simulation of transmitted X-rays in a polycapillary X-ray lens, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 795 (2015) 186-191.


◎专利

发明专利(第一发明人):

[1] 基于多传感器的管道含砂量检测装置,ZL202010103895.7,2022.10.21.

[2] 气井出砂检测实验装置,ZL111257177A,2022.06.07

[3] 油气管道出砂量监测实验装置及监测方法,ZL2017105795460,2020.07.03

[4] 深水油气井水下出砂监测装置及监测方法,CN111305814A,2020.06.19

[5] 一种用于采油井的套管漏点深度检测方法和装置, ZL201611135961.9,2019.11.26.

[6] 一种丛式井井间距离测量方法, ZL201710674338.9,2019.05.17.

[7] 一种非植入式稠油油井出砂量监测系统及其方法, ZL201610047626.7,2018.12.28. 

[8] 多相流管道泥砂颗粒含量与冲蚀监测预警装置及方法,CN 202211095966.9, 2022.09.08.

[9] 水下井口输气管道砂粒粒径分布检测系统及方法, CN202211062146.X,2022.09.01.

软件著作权:

[1] 气-液两相流输运管道泥砂颗粒含量检测软件,2020SR1793580,2020.

[2] 颗粒高速冲击平板诱发的振动响应监测软件,2020SR1793579,2020.

[3] 生产井出砂在线检测软件,2020SR0168730,2019.

[4] 海上油田适度出砂监测软件,2015SR194011,2015.

[5] 海上油田从式井网整体加密调整多平台钻井趋近井筒监测软件,2015SR099291,2015.

Layer 1 留言咨询 客服热线: 18150019696 15159723275 ( 周一至周五 8:30-18:00 ) (微信同号)

立即联系

相关专家

Layer 1

客服电话 (点击复制)

15159723275

微信公众账号

微信扫一扫加关注

意见反馈 帮助文档 返回
顶部